Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0396723, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647345

RESUMO

Acylhydrazone (AH) derivatives represent a novel category of anti-fungal medications that exhibit potent activity against Sporothrix sp., both in vitro and in a murine model of sporotrichosis. In this study, we demonstrated the anti-fungal efficacy of the AH derivative D13 [4-bromo-N'-(3,5-dibromo-2-hydroxybenzylidene)-benzohydrazide] against both planktonic cells and biofilms formed by Sporothrix brasiliensis. In a clinical study, the effect of D13 was then tested in combination with itraconazole (ITC), with or without potassium iodide, in 10 cats with sporotrichosis refractory to the treatment of standard of care with ITC. Improvement or total clinical cure was achieved in five cases after 12 weeks of treatment. Minimal abnormal laboratory findings, e.g., elevation of alanine aminotransferase, were observed in four cats during the combination treatment and returned to normal level within a week after the treatment was ended. Although highly encouraging, a larger and randomized controlled study is required to evaluate the effectiveness and the safety of this new and exciting drug combination using ITC and D13 for the treatment of feline sporotrichosis. IMPORTANCE: This paper reports the first veterinary clinical study of an acylhydrazone anti-fungal (D13) combined with itraconazole against a dimorphic fungal infection, sporotrichosis, which is highly endemic in South America in animals and humans. Overall, the results show that the combination treatment was efficacious in ~50% of the infected animals. In addition, D13 was well tolerated during the course of the study. Thus, these results warrant the continuation of the research and development of this new class of anti-fungals.

2.
Bioorg Med Chem ; 100: 117610, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306882

RESUMO

Clinically available antifungal drugs have therapeutic limitations due to toxicity, narrow spectrum of activity, and intrinsic or acquired drug resistance. Thus, there is an urgent need for new broad-spectrum antifungal agents with low toxicity and a novel mechanism of action. In this context, we have successfully identified several highly promising lead compounds, i.e., aromatic N'-(salicylidene)carbohydrazides, exhibiting excellent antifungal activities against Cryptococcus neoformans, Candida albicans, Aspergillus fumigatus and several other fungi both in vitro and in vivo. Building upon these highly promising results, 71 novel N'-(salicylidene)heteroarenecarbohydrazides 5 were designed, synthesized and their antifungal activities examined against fungi. Based on the SAR study, four highly promising lead compounds, i.e., 5.6a, 5.6b, 5.7b and 5.13a were identified, which exhibited excellent potency against C. neoformans, C. albicans and A. fumigatus, and displayed impressive time-kill profiles against C. neoformans with exceptionally high selectivity indices (SI ≥ 500). These four lead compounds also showed synergy with clinical antifungal drugs, fluconazole, caspofungin (CS) and amphotericin B against C. neoformans. For the SAR study, we also employed quantitative structure-activity relationship (QSAR) analysis by taking advantage of the accumulated data on a large number of aromatic and heteroaromatic N'-(salicylidene)carbohydrazides, which successfully led to rational design and selection of promising compounds for chemical synthesis and biological evaluation.


Assuntos
Antifúngicos , Cryptococcus neoformans , Hidrazinas , Anfotericina B , Antifúngicos/química , Candida albicans , Fluconazol , Testes de Sensibilidade Microbiana , Hidrazinas/química , Hidrazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...